median_or_mean_and_errors#
- post_processors.median_or_mean_and_errors(value_plotted, ignored_parameters, quantile=0.8, mean=True)#
Compute the median or mean of values in column
value_plottedin df, ignoring (i.e. grouping-by) columns in listignored_parameters. Adds upper/lower estimates (aka error bars) for the valuesdf["value_plotted"]. The estimates are taken over the variables NOT indf[x]for x inparametersusing quantiles.This function creates a new dataframe with
3 + len(ignored_parameters)columns namedvalue_plotted,value_plotted``_08 and ``value_plotted``_02 and the strings in ``ignored_parameters.- Parameters:
df (pandas dataframe) – input dataframe with column
value_plottedandparameters.value_plotted (string) – the name of the column in df for which error bars are required.
ignored_parameters (list of strings) – the names of columns which are grouped-by to perform the quantile estimation. They will not be used together for the quantile estimate, use this for instance for the x variable in a y/x plot where error bars are computed on y over several seeds.
quantile (float, optional) – quantile value, by default 0.8
mean (boolean, optional) – True is mean is returned, False if median, by default True
- Return type:
pandas dataframe